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ABSTRACT

An efficient approach to benzoxazoles via tandem migration�carboalkoxylation of o-isocyanophenyl acetals has been developed. Both a Lewis
acid and base are essential for this reaction, and the BF3 3OEt2/2,4,6-collidine combination is the best choice for cooperative transformation.

Benzoxazoles are an important class of aromatic com-
pounds and have been used for biologically active mole-
cules and fluorescent sensors.1 Because of their usefulness,
numerous efficient methods for the synthesis of benzo-
xazoles have been developed, including the condensation
of 2-aminophenols with carboxylic acid derivatives.2 To
date, transition-metal-catalyzed C�H functionalizations
of benzoxazoles have been reported and those elegant and
straightforward approaches can createC�Cbonds directly,
even sp3 carbon centers.3

Recently, we have explored a versatile synthesis for
benzofurans by iodocyclization of ethoxyethyl ethers to
alkynes.4 During the course of our studies into the iodine-
mediated cyclization using isonitriles instead of alkynes
as the substrates, we found that the reaction of isocyano-
phenyl acetal 1a with bis(2,4,6-collidine)iodonium(I)

hexafluorophosphate [I(coll)2PF6] and BF3 3OEt2 af-
forded 2-(R-alkoxyalkyl)benzoxazole 2a in 79% yield
and iodinated benzoxazole 3a was not obtained (eq 1).
Isonitrile compounds are often used for multicompo-
nent reactions such as Ugi’s four-component reaction
and Passerini’s three-component reaction,5 and in gen-
eral, they are transferred to amide groups through
carboalkoxylations. Isonitriles are also converted to a
component of heteroaromatic rings such as indoles,6

benzofurans,7 imidazoles,8 and oxazoles.9 While ben-
zoxazoles can be prepared via carboalkoxylation of un-
stable o-isocyanophenols,10 this variant accompanied by
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migration of the R-alkoxyalkyl group has not yet been
established.11 In the present communication, we describe
our primary studies of this unprecedented reaction.

First,we investigated the suitable reaction conditions for
the tandem migration�carboalkoxylation process of 1a

(Table 1). Based on the initial result in eq 1,we investigated
which reagents were necessary for this reaction to pro-
ceed cleanly. Although each reagent alone was not suffi-
cient (entries 1�3), to our surprise, the combination of
BF3 3OEt2/2,4,6-collidine promoted this process to give 2a
in good yields similar to eq 1 (entries 4�5).As both aLewis
acid and base were essential for our desired transforma-
tion, we next screened for the best combination. The use
of pyridine, DMAP, or triethylamine as the Lewis base
resulted in the recovery of 1a, whereas the choice of 2,
6-lutidine or triphenylphosphine afforded 2a in moderate
yields (entries 6�10). TMSOTf/2,4,6-collidine conditions

affordedno product at all, and 1awas recovered (entry 11).
Other Lewis acids were also examined, but more efficient
candidates were not found (entries 12�13). The treatment
with PPTS, a complex of a Lewis acid and base, resulted in
a complex reaction with undesired byproducts (entry 14).
Therefore, the optimized conditions were determined as
shown in entry 5.

These results prompted us to apply this tandem
migration�carboalkoxylation sequence to various acetal
compounds (Scheme 1). Other acyclic acetal substrates
1b�cwere effective; however, bromo-substituted acetal 1d
required three times the quantity of reagents and a long

Table 1. Transformation of 1aa

entry conditions (equiv)

time

(min)

2a

(%)

1a

(%)

1 I(coll)2PF6 (2) 15 0b 0

2 BF3 3OEt2 (1) 10 30 0

3 2,4,6-collidine (2) 30 0 96

4 BF3 3OEt2 (1), 2,4,6-collidine (1) 10 76 0

5 BF3 3OEt2 (1), 2,4,6-collidine (2) 10 81 0

6 BF3 3OEt2 (1), pyridine (2) 30 8 63

7 BF3 3OEt2 (1), 2,6-lutidine (2) 10 78 0

8 BF3 3OEt2 (1), DMAP (2) 60 16 41

9 BF3 3OEt2 (1), Et3N (2) 30 18 57

10 BF3 3OEt2 (1), Ph3P (2) 10 63 0

11 TMSOTf (1), 2,4,6-collidine (2) 60 0 100

12 TiCl4 (1), 2,4,6-collidine (2) 10 35 0

13 SnCl4 (1), 2,4,6-collidine (2) 10 48 0

14 PPTS (1) 90 8c 0

aLewis acid was added to a solution of 1a and Lewis base in CH2Cl2
(0.1 M) at rt. bDecomposed. cReaction gradually became more complex.

Scheme 1. Tandem Migration�Carboalkoxylation of 1a

aBF3 3OEt2 (1 equiv) was added to a solution of 1 and 2,4,6-collidine
(2 equiv) in CH2Cl2 (0.1M) at rt. bBF3 3OEt2 (2 equiv) and 2,4,6-collidine
(2 equiv)were used. cBF3 3OEt2 (4 equiv) and2,4,6-collidine (6 equiv)were
used. dNo reaction. eBF3 3OEt2 (1.5 equiv) and 2,4,6-collidine (2 equiv)
were used. fBF3 3OEt2 (2 equiv) and 2,4,6-collidine (4 equiv) were used.(11) For intramolecular carboalkoxylation of alkynes accompanied

by migration of the acetal unit, see: (a) Nakamura, I.; Bajracharya,
G. B.; Mizushima, Y.; Yamamoto, Y. Angew. Chem., Int. Ed. 2002, 41,
4328–4331. (b) Nakamura, I.; Bajracharya, G. B.; Wu, H.; Oishi, K.;
Mizushima, Y.; Gridnev, I. D.; Yamamoto, Y. J. Am. Chem. Soc. 2004,
126, 15423–15430. (c) Nakamura, I.; Mizushima, Y.; Yamamoto, Y.
J. Am. Chem. Soc. 2005, 127, 15022–15023. (d) Nakamura, I.; Chan,
C. S.; Araki, T.; Terada, M.; Yamamoto, Y. Adv. Synth. Catal. 2009,
351, 1089–1100. (e) F€urstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005,
127, 15024–15025. (f) F€urstner, A.; Heilmann, E. K.; Davies, P. W.
Angew. Chem., Int. Ed. 2007, 46, 4760–4763.
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reaction time (6 h). MOM (methoxymethyl) ether 1e was
sluggish probably due to its stereoelectronic effect. Cyclic
acetals such as THF and THP ethers were also efficiently
transformed into 2f�g in high yields. The reactions were
not affected by the alkyl (1h�j), methoxy (1k�l), nitro
(1m), and fluoro (1n�p) substituents at any position of the
aromatic ring. Bicyclic systems such as naphthalene deriv-
atives 1q�r gave corresponding naphthoxazoles 2q�r

in good yields. 1,6-Hexanediol-derived acetal 1s and per-
fluoroalkyl-tethered bis-acetal 1t could be applied to this
process by using twice the quantity of reagents to obtain
the respective double-cyclized products 2s and 2t in mod-
erate yields.
To clarify the stereoelectronic effect of this tandem

migration�carboalkoxylation process, we examined each
diastereomer of THP ether 1u (Scheme 2). The reaction of
anti-1u gave the corresponding anti-2u as a single diaste-
reomer in 79%yield. On the other hand, reaction of syn-1u
did not proceed and starting material was recovered in
89%yield. These phenomena are attributed to the location
of the phenolic oxygen of anti-1u in the axial position, and
its C�O bond is easily cleaved due to the anomeric effect.
In contrast, the positions of both substituents of the THP
ringof syn-1uare constrained in the equatorial configuration.

A valuable benefit in this tandem reaction is character-
ized by an application to a more highly functionalized
molecule such as an amino acid (Scheme 3). Tyrosine-
derived substrate 1v was applicable to this transformation
to afford novel R-amino acid derivative 2v in high yield. It
is worth noting that the BF3 3OEt2/2,4,6-collidine system
was so mild that several functionalities were tolerated,
including a silyl group (2u), an ester, and even a carbamate
(2v).
On the basis of the outcomes of these reactions, we pro-

posed two reactionmechanisms for the tandemmigration�
carboalkoxylation (Scheme 4). For path A, after the phe-
nolic oxygen of 1 binds to BF3, the resulting intermediate
A decomposes to isocyanophenoxide B and oxonium ion
C. Then, nucleophilic attack of isonitrile B toward C

forms reconstructed phenoxide E. Finally, the cyclization
of intermediate E accompanies the elimination of BF3 to

afford benzoxazole 2. In an alternative mechanism (path
B), BF3 would activate the isonitrile group. The acetal F
would add to the carbon of the isonitrile to form a
zwitterion G. The oxocarbenium ion C could then form
by departure from the oxonium ionG followed by trapping
by the carbanionH to afford 2. 2,4,6-Collidine might play
two important roles: (1) the stabilization of oxonium ionC
as collidinium salt D

12 and (2) the facilitation of the
cyclization step from E/H to 2 by the trapping of BF3.
Intermediates B/H and D were actually confirmed by
ESIMS study of the reaction mixture of 1a (see the Sup-
porting Information).
In summary, we have developed a tandem migration

carboalkoxylation of o-isocyanophenyl acetals. Since this

Scheme 2. Anomeric Effect

Scheme 3. Application to a More Complex Molecule

Scheme 4. Plausible Reaction Mechanism
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reaction proceeds under themild conditions of aBF3 3OEt2/
2,4,6-collidine system, a wide variety of 2-(R-alkoxyalkyl)-
benzoxazoles can be prepared. Interestingly, a Lewis
acid and base function cooperatively in this process.
Further studies into the full scope of this transformation
are ongoing.
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